7张图揭晓RocketMQ存储设计的精髓
?简介: RocketMQ 作为一款基于磁盘存储的中间件,具有无限积压能力,并提供高吞吐、低延迟的服务能力,其最核心的部分必然是它优雅的存储设计。
存储概述
RocketMQ 存储的文件主要包括 Commitlog 文件、ConsumeQueue 文件、Index 文件。
RocketMQ 将所有主题的消息存储在同一个文件中,确保消息发送时按顺序写文件,尽最大能力确保消息发送的高可用性与高吞吐量。
但消息中间件一般都是基于主题的订阅与发布模式,消息消费时必须按照主题进行帅选消息,显然从 Commitlog 文件中按照 topic 去筛选消息会变得及其低效,为了提高根据主题检索消息的效率,RocketMQ 引入了 ConsumeQueue 文件,俗成消费队列文件。
关系型数据库可以按照字段属性进行记录检索,作为一款主要面向业务开发的消息中间件,RocketMQ 也提供了基于消息属性的检索能力,底层的核心设计理念是为 Commitlog 文件建立哈希索引,并存储在 Index 文件中。
在 RocketMQ 中顺序写入到 Commitlog 文件后,ConsumeQueue 与 Index 文件都是异步构建的,其数据流向图如下:
存储文件组织方式
RocketMQ 在消息写入过程中追求极致的磁盘顺序写。所有主题的消息全部写入一个文件,即 Commitlog 文件。所有消息按抵达顺序依次追加到文件中,消息一旦写入,不支持修改。Commitlog 文件的具体布局如下图所示:
正如关系型数据会为每一条数据引入一个 ID 字段,在基于文件编程的模型中,也会为一条消息引入一个身份标志:消息物理偏移量,即消息存储在文件的起始位置。
正是有了物理偏移量的概念,Commitlog 的文件名命名也是极具技巧性,使用了存储在该文件的第一条消息在整个 Commitlog 文件组中的偏移量来命名,例如第一个 Commitlog 文件为
0000000000000000000,第二个文件为
00000000001073741824,然后依次类推。
这样做的好处是给出任意一个消息的物理偏移量,例如消息偏移量为 73741824,可以通过二分法进行查找,快速定位这个文件在第一个文件中,然后用消息的物理偏移量减去该文件的名称所得到的差值,就是在该文件中的绝对地址。
Commitlog 文件的设计理念是追求极致的消息写,但我们知道消息消费模型是基于主题的订阅机制,即一个消费组是消费特定主题的消息。如果根据主题从 commitlog 文件中检索消息,我们会发现这绝不是一个好主意,只能从文件的第一条消息逐条检索,其性能可想而知,故为了解决基于 topic 的消息检索问题,RocketMQ 引入了 consumequeue 文件,consumequeue 的结构如下图所示。
Consumequeue 的设计极具技巧,每个条目长度固定(8 字节 commitlog 物理偏移量、4 字节消息长度、8 字节 tag hashcode)。
这里不是存储 tag 的原始字符串,而选择存储 hashcode,目的就是确保每个条目的长度固定,可以使用访问类似数组下标的方式快速定位条目,极大地提高了 ConsumeQueue 文件的读取性能。
试想一下,消息消费者根据 topic、消息消费进度(consumeuqe 逻辑偏移量),即第几个 Consumeque 条目,这样的消费进度去访问消息的方法为使用逻辑偏移量 logicOffset * 20 即可找到该条目的起始偏移量(consumequeue 文件中的偏移量),然后读取该偏移量后 20 个字节即得到一个条目,无须遍历 consumequeue 文件。
RocketMQ 与 Kafka 相比具有一个强大的优势,就是支持按消息属性检索消息,引入 consumequeue 文件解决了基于 topic 查找的问题,但如果想基于消息的某一个属性查找消息,consumequeue 文件就无能为力了。
RocketMQ 引入了 Index 索引文件,实现基于文件的哈希索引。IndexFile 的文件存储结构如下图所示:
即建立了索引 Key 的 hashcode 与物理偏移量的映射关系,根据 key 先快速定义到 commitlog 文件。
顺序写
基于磁盘的读写,提高其写入性能的另外一个设计原理是磁盘顺序写。
磁盘顺序写广泛用在基于文件的存储模型中,大家不妨思考一下 MySQL Redo 日志的引入目的,我们知道在 MySQL InnoDB 的存储引擎中,会有一个内存 Pool,用来缓存磁盘的文件块,当更新语句将数据修改后,会首先在内存中进行修改,然后将变更写入到 redo 文件(刷写到磁盘),然后定时将 InnoDB 内存池中的数据刷写到磁盘。
内存映射机制
虽然基于磁盘的顺序写可以极大提高 IO 的写效率,但如果基于文件的存储采用常规的 JAVA 文件操作 API,例如 FileOutputStream 等,其性能提升会很有限,RocketMQ 引入了内存映射,将磁盘文件映射到内存中,以操作内存的方式操作磁盘,性能又提升了一个档次。
在 JAVA 中可通过 FileChannel 的 map 方法创建内存映射文件。
在 Linux 服务器中由该方法创建的文件使用的就是操作系统的 pagecache,即页缓存。
Linux 操作系统中的内存使用策略时会尽可能地利用机器的物理内存,并常驻内存中,就是所谓的页缓存。在操作系统的内存不够的情况下,采用缓存置换算法,例如 LRU 将不常用的页缓存回收,即操作系统会自动管理这部分内存。
如果 RocketMQ Broker 进程异常退出,存储在页缓存中的数据并不会丢失,操作系统会定时将页缓存中的数据持久化到磁盘,做到数据安全可靠。不过如果是机器断电等异常情况,存储在页缓存中的数据就有可能丢失。
灵活多变的刷盘策略
有了顺序写和内存映射的加持,RocketMQ 的写入性能得到了极大的保证,但凡事都有利弊,引入了内存映射和页缓存机制,消息会先写入到页缓存,此时消息并没有真正持久化到磁盘。那么 broker 收到客户端的消息发送后,是存储到页缓存中就直接返回成功,还是要持久化到磁盘中才返回成功呢?
这是一个“艰难”的抉择,是在性能与消息可靠性方面进行权衡。为此,RocketMQ 提供了多种策略:同步刷盘、异步刷盘。
1、同步刷盘
同步刷盘在 RocketMQ 的实现中成为组提交,并不是每一条消息都必须刷盘。其设计理念如图所示:
2、异步刷盘
同步刷盘的优点是能保证消息不丢失,即向客户端返回成功就代表这条消息已被持久化到磁盘,即消息非常可靠,但这是以牺牲写入响应延迟性能为代价的,由于 RocketMQ 的消息是先写入 pagecache,故消息丢失的可能性较小,如果能容忍一定几率的消息丢失,可以考虑使用异步刷盘。
异步刷盘指的是 broker 将消息存储到 pagecache 后就立即返回成功,然后开启一个异步线程定时执行 FileChannel 的 forece 方法,将内存中的数据定时刷写到磁盘,默认间隔为 500ms。
内存级读写分离
RocketMQ 为了降低 pagecache 的使用压力引入了 transientStorePoolEnable 机制,即内存级别的读写分离机制。
默认情况下 RocketMQ 将消息写入 pagecache,消息消费时从 pagecache 中读取,这样在高并发时 pagecache 的压力会比较大,容易出现瞬时 broker busy,故 RocketMQ 还引入了 transientStorePoolEnable,将消息先写入堆外内存并立即返回,然后异步将堆外内存中的数据提交到 pagecache,再异步刷盘到磁盘中。其工作机制如下图所示:
该方案的优点是消息是直接写入堆外内存,然后异步写入 pagecache。相比每条消息追加直接写入 pagechae,其最大的优势是将消息写入 pagecache 操作批量化。
该方案的缺点是如果由于某些意外操作导致 Broker 进程异常退出,那么存储在堆外内存的数据会丢失,但如果是放入 pagecache,broke r异常退出并不会丢失消息。
原文链接
本文为阿里云原创内容,未经允许不得转载。
?