微积分(A)随缘一题[10]


不妨设 \(f'(0)=\lim_{x \to 0}\frac{f(x)}{x}=A\),即 \(\forall \epsilon>0,\exists \delta>0,s.t.\forall x \in U^\circ(0,\delta),|\frac{f(x)}{x}-A|<\epsilon\)

不妨设 \(x>0\),得 \(x(A-\epsilon)

\(\frac{n}{n^2} \in U^\circ(0,\delta)\) 时,有 \(x_n<(A+\epsilon) \sum_{k=1}^{n} \frac{k}{n^2}=(A+\epsilon)\frac{n+1}{2n}\),同时有 \(x_n>(A-\epsilon)\frac{n+1}{2n}\)

考虑到 \(\lim_{\epsilon \to 0} \lim_{n \to \infty} (A \pm \epsilon)\frac{n+1}{2n}=\frac{A}{2}\)

所以 \(\lim_{n \to \infty}x_n=\frac{A}{2}=\frac{f'(0)}{2}\)


也可以从微分角度(对于一元函数,可导和可微等价)来看:

考虑到 \(f(\frac{1}{n^2})-f(0)=f'(0)\frac{1}{n^2}+o(\frac{1}{n^2}) \Rightarrow f(\frac{1}{n^2})=\frac{f'(0)}{n^2}+o(\frac{1}{n^2})\)

于是有 \(\sum_{k=1}^{n}f(\frac{k}{n^2})=f'(0)\left(\sum_{k=1}^{n}\frac{k}{n^2}\right)+n \cdot o(\frac{1}{n})=f'(0) \frac{n+1}{2n}+o(1) \Rightarrow \lim_{n \to \infty}x_n=\frac{f'(0)}{2}\)