空间向量及其运算
选择性必修第一册同步提高练习,难度2颗星!
模块导图
知识剖析
1空间向量的概念
在空间,我们把具有大小和方向的量叫做空间向量,用字母\(\vec{a}, \vec{b}, \vec{c} \ldots \ldots\)表示,空间向量的大小叫做空间向量的长度或模.
\({\color{Red}{ PS }}\)
\((1)\)空间中点的位移、物体运动的速度、物体受到的力等都可以用空间向量表示;
\((2)\)向量\(\vec{a}\)的起点是\(A\),终点是\(B\),则向量\(\vec{a}\)也可以记作\(\overrightarrow{A B}\),其模记为\(|\vec{a}|\)或\(|\overrightarrow{A B}|\);
\((3)\)向量一般用有向线段表示 同向等长的有向线段表示同一或相等的向量;
\((4)\)向量具有平移不变性.
\((5)\)在空间,零向量、单位向量、相等向量、反向量与在平面的对应向量一样.
2 运算
\((1)\)定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图).
\(\overrightarrow{O A}=\overrightarrow{O B}+\overrightarrow{O C}=\vec{a}+\vec{b}, \quad \overrightarrow{C B}=\overrightarrow{O B}-\overrightarrow{O C}=\vec{a}-\vec{b}, \quad \overrightarrow{O P}=\lambda \vec{a}(\lambda \in R)\)
\((2)\)运算律
① 加法交换律:\(\vec{a}+\vec{b}=\vec{b}+\vec{a}\);
② 加法结合律:\((\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})\);
③ 数乘分配律:\(\lambda(\vec{a}+\vec{b})=\lambda \vec{a}+\lambda \vec{b}\);
运算法则:三角形法则、平行四边形法则、平行六面体法则.
\({\color{Red}{PS }}\)平行六面体法则:在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(\overrightarrow{A C_{1}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\).
3 共线向量
\((1)\)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,\(\vec{a}\)平行于\(\vec{b}\),记作\(\vec{a} / / \vec{b}\).
\((2)\)共线向量定理:空间任意两个向量\(\vec{a}\),\(\vec{b}\)\((\vec{b} \neq \overrightarrow{0})\),\(\vec{a} / / \vec{b} \Rightarrow\)存在实数\(λ\),使\(\vec{a}=\lambda \vec{b}\).
\((3)\)三点共线:\(A\)、\(B\)、\(C\)三点共线\(\Rightarrow \overrightarrow{A B}=\lambda \overrightarrow{A C} \Rightarrow \overrightarrow{O C}=x \overrightarrow{O A}+y \overrightarrow{O B}\)(其中\(x+y=1\))
\((4)\)与\(\vec{a}\)共线的单位向量为\(\pm \dfrac{\vec{a}}{|\vec{a}|}\).
4 共面向量
\((1)\)定义
一般地,能平移到同一平面内的向量叫做共面向量.说明:空间任意的两向量都是共面的.
\((2)\)共面向量定理
如果两个向量\(\vec{a}\),\(\vec{b}\)不共线,\(\vec{p}\)与向量\(\vec{a}\),\(\vec{b}\)共面的条件是存在实数\(x\),\(y\),使\(\vec{p}=x \vec{a}+y \vec{b}\).
\((3)\)四点共面
若\(A\)、\(B\)、\(C\)、\(P\)四点共面
\(\Rightarrow \overrightarrow{A P}=x \overrightarrow{A B}+y \overrightarrow{A C} \Rightarrow \overrightarrow{O P}=x \overrightarrow{O A}+y \overrightarrow{O B}+z \overrightarrow{O C}\)(其中\(x+y+z=1\))
5 空间向量基本定理
如果三个向量\(\vec{a}\),\(\vec{b}\),\(\vec{c}\)不共面,那么对空间任一向量\(\vec{p}\),存在一个唯一的有序实数组\(x\),\(y\),\(z\),使\(\vec{p}=x \vec{a}+y \vec{b}+z \vec{c}\).
若三向量\(\vec{a}\),\(\vec{b}\),\(\vec{c}\)不共面,我们把\((\vec{a}, \vec{b}, \vec{c})\)叫做空间的一个基底,\(\vec{a}\),\(\vec{b}\),\(\vec{c}\)叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底.
推论:设\(O\),\(A\),\(B\),\(C\)是不共面的四点,则对空间任一点\(P\),都存在唯一的三个有序实数\(x\),\(y\),\(z\),使\(\overrightarrow{O P}=x \overrightarrow{O A}+y \overrightarrow{O B}+z \overrightarrow{O C}\).
6 空间向量的直角坐标系
\((1)\)空间直角坐标系中的坐标
在空间直角坐标系\(O-x y z\)中,对空间任一点\(A\),存在唯一的有序实数组\((x ,y ,z)\),使\(\overrightarrow{O A}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}\), 有序实数组\((x ,y ,z)\)叫作向量\(A\)在空间直角坐标系 中的坐标,记作\(A(x ,y ,z)\),\(x\)叫横坐标,\(y\)叫纵坐标,\(z\)叫竖坐标.
\((2)\)空间向量的直角坐标运算律
① 若\(\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)\),\(\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)\),
则\(\vec{a}+\vec{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)\),\(\vec{a}-\vec{b}=\left(a_{1}-b_{1}, a_{2}-b_{2}, a_{3}-b_{3}\right)\)
\(\lambda \vec{a}=\left(\lambda a_{1}, \lambda a_{2}, \lambda a_{3}\right) \quad(\lambda \in R)\)
\(\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\),
\(\vec{a} \| \vec{b} \Rightarrow a_{1}=\lambda b_{1}\),\(a_{2}=\lambda b_{2}\),\(a_{3}=\lambda b_{3}(\lambda \in R)\)
\(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0 \Rightarrow a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=0\),
② 若\(A(x_1 ,y_1 ,z_1 )\),\(B(x_2 ,y_2 ,z_2 )\),则\(\overrightarrow{A B}=\left(x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right)\).
③ 模长公式
若\(\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)\),则\(|\vec{a}|=\sqrt{\vec{a} \cdot \vec{a}}=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}\),
④ 夹角公式
\(\cos \langle\vec{a}, \vec{b}\rangle=\dfrac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot|\vec{b}|}=\dfrac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}\)
\(?ABC\)中 ,\(\overrightarrow{A B} \cdot \overrightarrow{A C}>0 \Rightarrow\)\(A\)为锐角,\(\overrightarrow{A B} \cdot \overrightarrow{A C}<0 \Rightarrow\)\(A\)为钝角.
⑤ 两点间的距离公式:若\(A(x_1 ,y_1 ,z_1)\),\(B(x_2 ,y_2 ,z_2)\)
则\(|\overrightarrow{A B}|=\sqrt{\overrightarrow{A B^{2}}}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\)
或\(d_{A B}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\).
7 数量积
\((1)\)空间向量的夹角及其表示:已知两非零向量\(\vec{a}\),\(\vec{b}\),在空间任取一点\(O\),作\(\overrightarrow{O A}=\vec{a}\),\(\overrightarrow{O B}=\vec{b}\),则\(∠AOB\)叫做向量\(\vec{a}\)与\(\vec{b}\)的夹角,记作\(\langle\vec{a}, \vec{b}\rangle\);且规定\(0 \leq<\vec{a}, \vec{b}><\pi\);
若\(<\vec{a}, \vec{b}>=\dfrac{\pi}{2}\),则称\(\vec{a}\)与\(\vec{b}\)互相垂直,记作\(\vec{a} \perp \vec{b}\).
\((2)\)向量的模:设\(\overrightarrow{O A}=\vec{a}\),则有向线段\(\overrightarrow{O A}\)的长度叫做向量\(\vec{a}\)的长度或模,记作:\(|\vec{a}|\).
\((3)\)向量的数量积:已知向量\(\vec{a}\),\(\vec{b}\),则\(|\vec{a}| \vec{b} \mid \cos <\vec{a}, \vec{b}>\)叫做\(\vec{a}\),\(\vec{b}\)的数量积,记作\(\vec{a} \cdot \vec{b}\),即\(\vec{a} \cdot \vec{b}=|\vec{a}| \vec{b} \mid \cos \langle\vec{a}, \vec{b}\rangle\).
\((4)\)空间向量数量积的性质
①\(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0\) ②\(|\vec{a}|^{2}=\vec{a}^{2}\).
\((5)\)空间向量数量积运算律
①\((\lambda \vec{a}) \cdot \vec{b}=\lambda(\vec{a} \cdot \vec{b})=\vec{a}(\lambda \cdot \vec{b})\)
②\(\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}\)(交换律)
③\(\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}\)(分配律)
④不满足乘法结合律:\((\vec{a} \cdot \vec{b}) \cdot \vec{c} \neq \vec{a} \cdot(\vec{b} \cdot \vec{c})\)
经典例题
【题型一】共线共面问题
【典题1】已知\(\vec{a}=(2,-1,3)\),\(\vec{b}=(-4, x+1, y-2)\),若\(\vec{a} \| \vec{b}\),则\(x+y=\) \(\underline{\quad \quad}\).
【解析】\(\because \vec{a} \| \vec{b}\),\(∴\)存在实数\(k\)使得\(k \vec{a}=\vec{b}\),
\(\therefore\left\{\begin{array}{l}
-4=2 k \\
x+1=-k \\
y-2=3 k
\end{array}\right.\),解得\(k=-2\),\(x=1\),\(y=-4\).
则\(x+y=-3\).
【点拨】
① 共线向量定理:空间任意两个向量\(\vec{a}\),\(\vec{b}(\vec{b} \neq \overrightarrow{0})\),\(\vec{a} / / \vec{b} \Rightarrow \overrightarrow{1}\)存在实数\(λ\),使\(\vec{a}=\lambda \vec{b}\);
②若\(\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)\),\(\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)\),则\(\vec{a} \| \vec{b} \Rightarrow a_{1}=\lambda b_{1}\),\(a_{2}=\lambda b_{2}\),\(a_{3}=\lambda b_{3}(\lambda \in R)\).
【典题2】已知空间四点\(A(2,-1,1)\)、\(B(1,2 ,3)\)、\(C(0 ,2 ,1)\)、\(D(1 ,0 ,λ)\)在同一平面内,则实数\(λ=\) \(\underline{\quad \quad}\).
【解析】\(∵\)空间四点\(A(2,-1,1)\)、\(B(1,2 ,3)\)、\(C(0 ,2 ,1)\)、\(D(1 ,0 ,λ)\)在同一平面内,
\(\therefore \overrightarrow{A D}=m \overrightarrow{A B}+n \overrightarrow{A C}\),
即\((-1,1, \lambda-1)=m(-1,3,2)+n(-2,3,0)=(-m-2 n, 3 m+3 n, 2 m)\)
\(\therefore\left\{\begin{array}{l}
-m-2 n=-1 \\
3 m+3 n=1 \\
2 m=\lambda-1
\end{array}\right.\),解得\(m=-\dfrac{1}{3}\),\(n=\dfrac{2}{3}\),\(\lambda=\dfrac{1}{3}\).
\(∴\)实数\(\lambda=\dfrac{1}{3}\).
【点拨】若\(A\)、\(B\)、\(C\)、\(P\)四点共面\(\Rightarrow \overrightarrow{A P}=x \overrightarrow{A B}+y \overrightarrow{A C}\).
【典题3】在棱长为\(1\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\),\(F\),\(G\)分别在棱\(BB_1\),\(BC\),\(BA\)上,且满足\(\overrightarrow{B E}=\dfrac{3}{4} \overrightarrow{B B_{1}}\),\(\overrightarrow{B F}=\dfrac{1}{2} \overrightarrow{B C}\),\(\overrightarrow{B G}=\dfrac{1}{2} \overrightarrow{B A}\),\(O\)是平面\(B_1 GF\),平面\(ACE\)与平面\(B_1 BDD_1\)的一个公共点,设\(\overrightarrow{B O}=x \overrightarrow{B G}+y \overrightarrow{B F}+z \overrightarrow{B E}\),则\(x+y+z=\) \(\underline{\quad \quad}\).
【解析】如图所示,
正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(\overrightarrow{B E}=\dfrac{3}{4} \overrightarrow{B B_{1}}\),\(\overrightarrow{B F}=\dfrac{1}{2} \overrightarrow{B C}\),\(\overrightarrow{B G}=\dfrac{1}{2} \overrightarrow{B A}\),
\(\overrightarrow{B O}=x \overrightarrow{B G}+y \overrightarrow{B F}+z \overrightarrow{B E}\)\(=\dfrac{1}{2} x \overrightarrow{B A}+\dfrac{1}{2} y \overrightarrow{B C}+z \overrightarrow{B E}=x \overrightarrow{B G}+y \overrightarrow{B F}+\dfrac{3}{4} z \overrightarrow{B B_{1}}\),
\(∵O,A,C,E\)四点共面,\(O,D,E,B_1\)四点共面,
\(\therefore\left\{\begin{array}{l}
\dfrac{1}{2} x+\dfrac{1}{2} y+z=1 \\
x+y+\dfrac{3}{4} z=1
\end{array}\right.\),解得\(x+y=\dfrac{2}{5}\),\(z=\dfrac{4}{5}\);
\(\therefore x+y+z=\dfrac{6}{5}\).
【点拨】
① 若\(A\)、\(B\)、\(C\)、\(P\)四点共面\(\Rightarrow \overrightarrow{O P}=x \overrightarrow{O A}+y \overrightarrow{O B}+z \overrightarrow{O C}\)(其中\(x+y+z=1\));本很巧妙的利用了\(O\),\(A\),\(C\),\(E\)四点共面,\(O\),\(D\),\(E\),\(B_1\)四点共面得到\(x\)、\(y\)、\(z\)的两条关系式;
② 若本题\(\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\overrightarrow{0}\)空间向量的线性运算或者利用坐标系的方法求解,可利用平几的知识点(相似等)推算,但较为复杂.
巩固练习
1(★)在下列条件中,使\(M\)与\(A\),\(B\),\(C\)一定共面的是( )
A.\(\overrightarrow{O M}=\overrightarrow{O A}-\overrightarrow{O B}-\overrightarrow{O C}\)
B.\(\overrightarrow{O M}=\dfrac{1}{5} \overrightarrow{O A}+\dfrac{1}{3} \overrightarrow{O B}+\dfrac{1}{2} \overrightarrow{O C}\)
C.\(\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\overrightarrow{0}\)
D.\(\overrightarrow{O M}+\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{0}\)
2(★)已知空间向量\(\vec{m}=(3,1,3)\),\(\vec{n}=(-1, \lambda,-1)\),且\(\vec{m} \| \vec{n}\),则实数\(λ=\) \(\underline{\quad \quad}\).
3(★)已知\(\overrightarrow{P A}=(2,1,-3)\),\(\overrightarrow{P B}=(-1,2,3)\),\(\overrightarrow{P C}=(7,6, \lambda)\),若\(P\),\(A\),\(B\),\(C\)四点共面,则\(λ=\) \(\underline{\quad \quad}\).
答案
1.\(C\)
2.\(-\dfrac{1}{3}\)
3.\(-9\)
【题型二】空间向量中非坐标的运算
情况1 空间向量线性运算
【典题1】如图所示,在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(M\)为\(A_1 C_1\)与\(B_1 D_1\)的交点,若\(\overrightarrow{A B}=\vec{a}\),\(\overrightarrow{A D}=\vec{b}\),\(\overrightarrow{A A_{1}}=\vec{c}\),则\(\overrightarrow{C M}=\)( )
A.\(\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}+\vec{c}\)
B.\(\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}+\vec{c}\)
C.\(-\dfrac{1}{2} \vec{a}+\dfrac{1}{2} \vec{b}+\vec{c}\)
D.\(-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}+\vec{c}\)
【解析】
\({\color{Red}{ (与平面向量的方法类似,用“首尾相接法”把\overrightarrow{C M}向\vec{a}, \vec{b}, \vec{c}靠拢)}}\)
\(\overrightarrow{C M}=\overrightarrow{C B}+\overrightarrow{B M}\)
\(=-\vec{b}+\overrightarrow{B A}+\overrightarrow{A M}\)
\(=-\vec{b}-\vec{a}+\overrightarrow{A A_{1}}+\overrightarrow{A_{1} M}\)
\(=-\vec{b}-\vec{a}+\vec{c}+\dfrac{1}{2} \overrightarrow{A C}\)
\(=-\vec{b}-\vec{a}+\vec{c}+\dfrac{1}{2}(\vec{b}+\vec{a})\)
\(=-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}+\vec{c}\);
故选:\(D\).
【点拨】
① 空间向量运算符合三角形法则、平行四边形法则,类似平面向量;
② 本题解法很多,比较灵活,而本题解题思路是“首尾相接法”:以\(\vec{a}, \vec{b}, \vec{c}\)为基底,在对\(\overrightarrow{C M}\)“首尾相接”的时候,尽量向三个基底靠拢(利用\(\vec{a}, \vec{b}, \vec{c}\)或其共线向量表示),做到最后的式子只含三个基底向量;
③ 类似题目需要大胆下笔推算,也可利用一些常见结论:
(1) 在三角形\(?ABC\)中,点\(D\)是\(BC\)的中点,则\(\overrightarrow{A D}=\dfrac{1}{2} \overrightarrow{A B}+\dfrac{1}{2} \overrightarrow{A C}\).
(2) 平行六面体法则:在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(\overrightarrow{A C_{1}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\).
情况2 数量积的运算
【典题1】在平行六面体(底面是平行四边形的四棱柱)\(ABCD-A_1 B_1 C_1 D_1\)中,\(AB=AD=AA_1=1\),\(∠BAD=∠BAA_1=∠DAA_1=60°\),求\(AC_1\)的长度.
【解析】\(\because \overrightarrow{A C_{1}}=\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\),
则\(\overrightarrow{A C_{1}}^{2}=\left(\overrightarrow{A B}+\overrightarrow{A D}+\overrightarrow{A A_{1}}\right)^{2}\)\(=\overrightarrow{A B}^{2}+\overrightarrow{A D}^{2}+\overrightarrow{A A_{1}}^{2}+2 \overrightarrow{A B} \cdot \overrightarrow{A D}+2 \overrightarrow{A B} \cdot \overrightarrow{A A_{1}}+2 \overrightarrow{A D} \cdot \overrightarrow{A A_{1}}\)
\(=1+1+1+3 \times 2 \times 1 \times 1 \times \cos 60^{\circ}=6\).
\(\therefore\left|\overrightarrow{A C_{1}}\right|=\sqrt{6}\).
【点拨】
① 在空间向量中,如同平面向量由数量积的定义也可有\(|\vec{a}|^{2}=\vec{a}^{2}\),用于求线段;
② 本题不好建系,不适宜利用坐标的方法求解.
【典题2】如图,\(60^°\)的二面角的棱上有\(A\)、\(B\)两点,直线\(AC\)、\(BD\)分别在这个二面角的两个半平面内,且都垂直于\(AB\).已知\(AB=2\),\(AC=3\),\(BD=4\),求\(CD\)的长.
【解析】
\({\color{Red}{方法一 }}\) 如图过点\(A\)作\(AE//BD\),过\(D\)作\(DE//AB\),
则易得\(∠CAE=60^°\),\(AE=4\),\(ED=2\),
在\(?CAE\)中,\(C E^{2}=A C^{2}+A E^{2}-2 A C \cdot A E \cdot \cos \angle C A E=9+16-12=13\)
在\(Rt?CED\)中,\(C D^{2}=C E^{2}+E D^{2}=13+4=17 \Rightarrow C D=\sqrt{17}\).
\({\color{Red}{方法二 }}\) 如图,\(\overrightarrow{C D}=\overrightarrow{C A}+\overrightarrow{A B}+\overrightarrow{B D}\),
\(\overrightarrow{C D}^{2}=(\overrightarrow{C A}+\overrightarrow{A B}+\overrightarrow{B D})^{2}\)
\(=\overrightarrow{C A}^{2}+\overrightarrow{A B}^{2}+\overrightarrow{B D}^{2}+2(\overrightarrow{C A} \cdot \overrightarrow{A B}+\overrightarrow{A B} \cdot \overrightarrow{B D}+\overrightarrow{B D} \cdot \overrightarrow{C A})\)
\(=\overrightarrow{C A}^{2}+\overrightarrow{A B}^{2}+\overrightarrow{B D}^{2}+2 \overrightarrow{B D} \cdot \overrightarrow{C A}\)
\(=9+4+16+2 \times 4 \times 3 \times \cos 120^{\circ}\)
\(=17\)
\(∴CD\)的长为\(\sqrt{17}\).
【点拨】
①\(\vec{a} \perp \vec{b} \Rightarrow \vec{a} \cdot \vec{b}=0\);
② 方法一 利用了二面角的概念和平几的知识进行求解,方法二直接利用向量的运算显得更简洁,也体现了向量的威力!
巩固练习
1(★)在四面体\(ABCD\)中,点\(F\)在\(AD\)上,且\(AF=2FD\),\(E\)为\(BC\)中点,则\(\overrightarrow{E F}\)等于( )
A.\(\overrightarrow{E F}=\dfrac{1}{2} \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}-\dfrac{2}{3} \overrightarrow{A D}\)
B.\(\overrightarrow{E F}=-\dfrac{1}{2} \overrightarrow{A C}-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{2}{3} \overrightarrow{A D}\)
C.\(\overrightarrow{E F}=\dfrac{1}{2} \overrightarrow{A C}-\dfrac{1}{2} \overrightarrow{A B}+\dfrac{2}{3} \overrightarrow{A D}\)
D.\(\overrightarrow{E F}=-\dfrac{1}{2} \overrightarrow{A C}+\dfrac{1}{2} \overrightarrow{A B}-\dfrac{2}{3} \overrightarrow{A D}\)
2(★★)如图所示,在平行六面体\(ABCD-A_1 B_1 C_1 D_1\)中,\(\overrightarrow{A B}=\vec{a}\),\(\overrightarrow{A D}=\vec{b}\),\(\overrightarrow{A A_{1}}=\vec{c}\),\(M\)是\(D_1 D\)的中点,点\(N\)是\(AC_1\)上的点,且\(\overrightarrow{A N}=\dfrac{1}{3} \overrightarrow{A C_{1}}\),用\(\mid \vec{a}, \vec{b}, \vec{c}\)表示向量\(\overrightarrow{M N}\)的结果是( )
A.\(\dfrac{1}{2} \vec{a}+\vec{b}+\vec{c}\)
B.\(\dfrac{1}{5} \vec{a}+\dfrac{1}{5} \vec{b}+\dfrac{4}{5} \vec{c}\)
C.\(\dfrac{1}{5} \vec{a}-\dfrac{3}{10} \vec{b}-\dfrac{1}{5} \vec{c}\)
D.\(\dfrac{1}{3} \vec{a}-\dfrac{2}{3} \vec{b}-\dfrac{1}{6} \vec{c}\)
3(★★)已知球\(O\)内切于正四面体\(A-BCD\),且正四面体的棱长为\(2 \sqrt{6}\),线段\(MN\)是球\(O\)的一条动直径(\(M\),\(N\)是直径的两端点),点\(P\)是正四面体\(A-BCD\)的表面上的一个动点,则\(\overrightarrow{P M} \cdot \overrightarrow{P N}\)的最大值是\(\underline{\quad \quad}\).
4(★★)如图,三棱锥\(O-ABC\)各棱的棱长都是\(1\),点\(D\)是棱\(AB\)的中点,点\(E\)在棱\(OC\)上,且\(\overrightarrow{O E}=\lambda \overrightarrow{O C}\),记\(\overrightarrow{O A}=\vec{a},\),\(\overrightarrow{O B}=\vec{b}\),\(\overrightarrow{O C}=\vec{c}\).
(1)用向量\(\vec{a}, \vec{b}, \vec{c}\)表示向量\(\overrightarrow{D E}\);
(2)求\(DE\)的最小值.
5(★★)在三棱锥\(O-ABC\)中,已知侧棱\(OA\),\(OB\),\(OC\)两两垂直,用空间向量知识证明:底面三角形\(ABC\)是锐角三角形.
答案
1.\(B\)
2.\(D\)
3.\(8\)
4.\(\text { (1) } \overrightarrow{D E}=\lambda \vec{c}-\dfrac{1}{2} \vec{a}-\dfrac{1}{2} \vec{b}\quad \text { (2) } \dfrac{\sqrt{2}}{2}\)
5. 略
【题型三】空间向量中坐标的运算
【典题1】如图,\(BC=4\),原点\(O\)是\(BC\)的中点,点\(A\left(\dfrac{\sqrt{3}}{2}, \dfrac{1}{2}, 0\right)\),点\(D\)在平面\(yOz\)上,且\(∠BDC=90^°\),\(∠DCB=30^°\),则\(AD\)的长度为\(\underline{\quad \quad}\).
【解析】\(∵\)点\(D\)在平面\(yoz\)上,\(∴\)点\(D\)的横坐标为\(0\),
过点\(D\)作\(DH⊥BC\),
依题意易得\(D H=4 \sin 30^{\circ} \sin 60^{\circ}=\sqrt{3}\),\(O H=O B-B H=2-4 \sin 30^{\circ} \cos 60^{\circ}=1\),
即点\(D\)的竖坐标为\(z=\sqrt{3}\),纵坐标为\(y=-1\),
\(\therefore D(0,-1, \sqrt{3})\),
\(\therefore|A D|=\sqrt{\left(\dfrac{\sqrt{3}}{2}\right)^{2}+\left(\dfrac{1}{2}+1\right)^{2}+(\sqrt{3})^{2}}=\sqrt{6}\).
【点拨】
① 在空间坐标系中确定点的坐标是个硬骨头,基本方法是:
(1) 根据题意求出各线段长度,比如\(CD\)、\(BD\);
(2) 确定空间点坐标的意义,比如点\(D\)的竖坐标与点\(D\)到平面\(xOy\)的距离有关;
(3) 把空间问题平面化;
(4) 留意\(D\)坐标的正负.
② 两点间的距离公式:若\(A(x_1 ,y_1 ,z_1)\),\(B(x_2 ,y_2 ,z_2)\),
则\(|\overrightarrow{A B}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}\).
【典题2】\(△ABC\)的三个顶点分别是\(A(1 ,-1 ,2)\),\(B(5 ,-6 ,2)\),\(C(1 ,3 ,-1)\),则\(AC\)边上的高\(BD\)长\(\underline{\quad \quad}\).
【解析】
\({\color{Red}{方法一 }}\) \({\color{Red}{要求高BD,则只需求点D坐标,可采取待定系数法. }}\)
设点\(D(x、y、z)\),
则\(\overrightarrow{B D}=(x-5, y+6, z-2)\),\(\overrightarrow{A D}=(x-1, y+1, z-2)\),\(\overrightarrow{A C}=(0,4,-3)\),
由垂足\(D\)满足的条件
\(\left\{\begin{array} { l }
{ \vec { B D } \cdot \vec { A C } = 0 } \\
{ \vec { A D } / / \vec { A C } }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ 4 ( y + 6 ) - 3 ( z - 2 ) = 0 } \\
{ ( x - 1 , y + 1 , z - 2 ) = \lambda ( 0 , 4 , - 3 ) }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=1 \\
y=-\dfrac{21}{5} \\
z=\dfrac{22}{5}
\end{array}\right.\right.\right.\);
\(\therefore \overrightarrow{B D}=\left(-4, \dfrac{9}{5}, \dfrac{12}{5}\right)\),
\(\therefore|\overrightarrow{B D}|=\sqrt{4^{2}+\left(\dfrac{9}{5}\right)^{2}+\left(\dfrac{12}{5}\right)^{2}}=5\).
\({\color{Red}{方法二\quad 等积法}}\)
\({\color{Red}{(思考:因为三个点A、B、C确定了,则可求出?ABC的面积S_{ABC},继而可求高B D=\dfrac{2 S_{A B C}}{A C}) }}\)
\(∵A(1 ,-1 ,2)\),\(B(5 ,-6 ,2)\),\(C(1 ,3 ,-1)\),
\(\therefore \overrightarrow{A C}=(0,4,-3)\),\(\overrightarrow{A B}=(4,-5,0)\),
\(\therefore \cos A=\dfrac{\overrightarrow{A C} \cdot \overrightarrow{A B}}{|\overrightarrow{A C}| \cdot|\overrightarrow{A B}|}=\dfrac{-20}{5 \times \sqrt{41}}=-\dfrac{4}{\sqrt{41}} \Rightarrow \sin A=\dfrac{5}{\sqrt{41}}\),
\(\therefore S_{A B C}=\dfrac{1}{2}|\overrightarrow{A C}| \cdot|\overrightarrow{A B}| \sin A=\dfrac{25}{2},\),
\(\because S_{A B C}=\dfrac{1}{2} B D \times A C\),
\(\therefore B D=\dfrac{2 S_{A B C}}{A C}=\dfrac{25}{5}=5 .\).
【点拨】我们利用空间向量的知识也是可以求出几何中常见的量:线段长度(两点距离公式)、角度(数量积)、面积等.
【典题3】如图,直角三角形\(OAC\)所在平面与平面\(α\)交于\(OC\),平面\(OAC⊥\)平面\(α\),\(∠OAC\)为直角,\(OC=4\),\(B\)为\(OC\)的中点,且\(\angle A B C=\dfrac{2 \pi}{3}\),平面\(α\)内一动点\(P\)满足\(\angle P A B=\dfrac{\pi}{3}\),则\(\overrightarrow{O P} \cdot \overrightarrow{C P}\)的取值范围是\(\underline{\quad \quad}\)
【解析】
\({\color{Red}{ (题中垂直关系较多,较容易建系描出各点坐标,进而数量积\overrightarrow{O P} \cdot \overrightarrow{C P}易于用某个变量表示,再用函数的方法求其范围)}}\)
\(∵\)平面\(OAC⊥\)平面\(α\),
\(∴\)作\(AO'⊥OC\),则\(AO'⊥\)平面\(α\),
过\(O'\)在平面\(α\)内作\(OC\)的垂线\(O'X\),如图建立空间直角坐标系\(O'-XYZ\),
\(∵∠OAC\)为直角,\(OC=4\),\(B\)为\(OC\)的中点,且\(\angle A B C=\dfrac{2 \pi}{3}\), \({\color{Red}{(利用平几知识) }}\)
\(∴BC=AB=OB=2\),\(\angle A B O=\dfrac{\pi}{3}\),
\(O^{\prime} A=\sqrt{3}\),\(O'B=1\),\(OO'=1\),\(O'C=3\),
则\(O(0 ,-1 ,0)\),\(A(0,0, \sqrt{3})\),\(B(0 ,1 ,0)\),\(C(0 ,3 ,0)\),
设\(P(x ,y ,0)\),
\({\color{Red}{(点P是动点,在坐标系中引入变量x, y,再由限制条件\angle P A B=\dfrac{\pi}{3}得到x, y的关系) }}\)
则\(\overrightarrow{A P}=(x, y,-\sqrt{3})\),\(\overrightarrow{A B}=(0,1,-\sqrt{3})\),
\(\therefore \overrightarrow{A P} \cdot \overrightarrow{A B}=y+3\),
\(\because \angle P A B=\dfrac{\pi}{3}\)
\(\therefore \overrightarrow{A P} \cdot \overrightarrow{A B}=|\overrightarrow{A P}||\overrightarrow{A B}| \cos \angle P A B=2 \sqrt{x^{2}+y^{2}+3} \cdot \dfrac{1}{2}=\sqrt{x^{2}+y^{2}+3}\),
\(\therefore y+3=\sqrt{x^{2}+y^{2}+3} \Rightarrow x^{2}=6 y+6\),
\({\color{Red}{(点P的轨迹是抛物线) }}\)
\(\therefore \overrightarrow{O P} \cdot \overrightarrow{C P}=x^{2}+(y+1)(y-3)\)\(=6 y+6+y^{2}-2 y-3=y^{2}+4 y+3=(y+2)^{2}-1\),
又\(∵x^2=6y+6≥0\),
\(∴y≥-1\),
\({\color{Red}{(点P是有固定轨迹的,即y是有范围的,讨论函数性质也要优先讨论定义域) }}\)
\(∴\)当\(y=-1\)时,\(\overrightarrow{O P} \cdot \overrightarrow{C P}\)的最小值为\(0\),
\(\therefore \overrightarrow{O P} \cdot \overrightarrow{C P} \geq 0\).
故答案为\([0 ,+∞)\).
【点拨】
① 由平面OAC⊥平面α可想到建立空间直角坐标系的方法,根据\(?OAC\)已知条件可求其他角、边的大小,从而得到各点的坐标;
② 而\(\overrightarrow{O P} \cdot \overrightarrow{C P}\)由点\(P\)确定,能否求出其轨迹呢?而利用建坐标系的方法,较容易得到其轨迹(学圆锥曲线后也可知轨迹是抛物线);
③ 从数量积坐标运算的角度得\(\overrightarrow{A P} \cdot \overrightarrow{A B}=y+3\),从数量积的定义\(\overrightarrow{A P} \cdot \overrightarrow{A B}=\sqrt{x^{2}+y^{2}+3}\),从而得到点\(P\)的轨迹\(x^2=6y+6\);
④ 由坐标运算易求\(\overrightarrow{O P} \cdot \overrightarrow{C P}\)最小值化为\((y+2)^2-1\)的最小值,这里有函数思想,注意函数的定义域;
⑤ 本题若想用非坐标的方法解答:
\(\overrightarrow{O P} \cdot \overrightarrow{C P}=(\overrightarrow{O B}+\overrightarrow{B P})(\overrightarrow{C B}+\overrightarrow{B P})\)\(\overrightarrow{O B} \cdot \overrightarrow{C B}+\overrightarrow{B P}(\overrightarrow{O B}+\overrightarrow{C B})+\overrightarrow{B P}^{2}=|B P|^{2}-4\),
而得不到点\(P\)的轨迹,较难求出\(|BP|^2\)的范围!
巩固练习
1(★★)如图三棱柱\(ABC-A_1 B_1 C_1\)中,侧面\(BB_1 C_1 C\)是边长为\(2\)菱形,\(∠CBB_1=60°\),\(BC_1\)交\(B_1 C\)于点\(O\),\(AO⊥\)侧面\(BB_1 C_1 C\),且\(△AB_1 C\)为等腰直角三角形,如图建立空间直角坐标系\(O-xyz\),则点\(A_1\)的坐标为\(\underline{\quad \quad}\).
2(★★)已知点\(A(1,-2,11)\)、\(B(4,2,3)\),\(C(6,-1,4)\),则\(△ABC\)中角\(C\)的大小是\(\underline{\quad \quad}\).
3(★★)已知空间三点\(A(0 ,2 ,3)\),\(B(2 ,5 ,2)\),\(C(-2 ,3 ,6)\),则以\(AB\),\(AC\)为邻边的平行四边形的面积为\(\underline{\quad \quad}\).
4(★★★)已知长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(AB=4\),\(BC=3\),\(AA_1=2\),空间中存在一动点\(P\)满足\(\left|\overrightarrow{B_{1} P}\right|=1\),记\(I_{1}=\overrightarrow{A B} \cdot \overrightarrow{A P}\),\(I_{2}=\overrightarrow{A D} \cdot \overrightarrow{A P}\),\(I_{3}=\overrightarrow{A C_{1}} \cdot \overrightarrow{A P}\),则( )
A.存在点\(P\),使得\(I_1=I_2\)
B.存在点\(P\),使得\(I_1=I_3\)
C.对任意的点\(P\),有\(I_1>I_2\)
D.对任意的点\(P\),有\(I_2>I_3\)
5(★★★)如图,已知点\(P\)在正方体\(ABCD-A'B'C'D'\)的对角线\(BD'\)上,\(∠PDC=60°\).设\(\overrightarrow{D^{\prime} P}=\lambda \overrightarrow{D^{\prime} B}\),则\(λ\)的值为\(\underline{\quad \quad}\).
6(★★★)三棱锥\(O-ABC\)中,\(OA\),\(OB\),\(OC\)两两垂直且相等,点\(P\),\(Q\)分别是线段\(BC\)和\(OA\)上移动,且满足\(B P \leq \dfrac{1}{2} B C\),\(A Q \leq \dfrac{1}{2} A O\),则\(PQ\)和\(OB\)所成角余弦值的取值范围是\(\underline{\quad \quad}\).
答案
1.\((-\sqrt{3}, 1,1)\)
2.\(90°\)
3.\(6 \sqrt{5}\)
4.\(C\)
5.\(\sqrt{2}-1\)
6.\(\left[\dfrac{\sqrt{6}}{6}, \dfrac{2 \sqrt{5}}{5}\right]\)