P4709 信息传递 解题报告


P4709 信息传递 解题报告:

更好的阅读体验

题意

给定置换 \(f\),求有多少个置换 \(g\) 满足 \(g^n=f\)

\(1\leqslant |f|\leqslant 10^5\)

分析

首先这种题一看到就把置换拆分成若干个循环置换。

对于一个循环置换 \(g\),我们考虑它的 \(n\) 次方的形态:应该是 \(\gcd(|g|,n)\) 个相同的循环,那么等价地,\(a\) 个大小为 \(b\) 的循环能够拼起来当且仅当 \(\gcd(ab,n)=a\)

由于我们得到的是最终的循环置换,所以我们考虑把若干个大小相同的循环拼起来,我们仅需要对于每个环大小计算其贡献然后乘起来就好了。

我们考虑 \(a\) 个大小为 \(b\) 的环拼起来有多少种方法,由于是环首先要钦定一个位置作为开始,不妨令其为第一个环的第一个位置,而由于其他环需要断环为链,且内部要进行排列,所以一共会有 \((a-1)!b^{a-1}\) 种方案。

我们设一共有 \(k\) 个大小为 \(b\) 的环,设 \(f_i\) 表示用了 \(k\) 个环的代价,可以列出转移方程:

\[f_i\leftarrow\sum_{d=1}^i[\gcd(b\times d,n)=d](d-1)!b^{d-1}{i-1\choose d-1}f_{i-r} \]

注意这里是 \({i-1\choose d-1}\) 是因为若干次选择之间是无序的,所以我们需要钦定一个环为第一个选的才能去重。

枚举 \(d\) 可以只枚举 \(n\) 的因子,最终复杂度为 \(O(nd(n)+\sqrt{n}d(n)\log n)\)

代码

目前是最优解 rk1。

#include
#include
using namespace std;
const int maxn=100005,mod=998244353;
int n,ans;
int p[maxn],vis[maxn],tot[maxn],f[maxn],fac[maxn],inv[maxn],nfac[maxn],mul[maxn];
vectorv,d;
int gcd(int a,int b){
	return b==0? a:gcd(b,a%b);
}
int solve(int a,int b){
	f[0]=mul[0]=1;
	for(int i=1;i<=a;i++)
		mul[i]=1ll*mul[i-1]*b%mod;
	d.clear();
	for(int i=0;i